
CereProc cServer User Guide

Copyright CereProc Ltd 2019

Contents
Introduction 3

Installation 4
Windows Operating System . 4

cServer and Voice Installation . 4
cSpeech Client Installation . 5
cSpeech SAPI Client Installation . 6
Uninstallation . 6

Linux Operating System . 6
cServer Installation . 6
Voice Installation . 6
cSpeech Client Installation . 7
Uninstallation . 7

Additional Client Side Platforms . 7

Running the cServer 8
Windows Operating System . 8

Windows Log File . 8
Command Line Running . 8

Linux Operating System . 8
Linux Log File . 9
Command Line Running . 9

Maximum Incoming Connections . 9
Exceeding the Incoming Connection Limit . 9

Voice License Expiry . 9

cServer Configuration Options 9
cServer Configuration File . 9
User-configurable Options . 10

Server Options . 10
Voice Options and User Lexicons . 11
Voice and License Validation File Paths . 12
Monitoring options . 12

cSpeech Client 12
cSpeech Client Integration . 13

Minimal cSpeech Client Code Examples . 13
Alternative Synthesis Calls . 14
Example Applications in C++, Python, and C# . 15
cSpeech Header File . 15

Controlling the cServer with Queries . 15
Obtaining Voice Information . 15
Selecting a Voice . 16
Reloading a User Lexicon . 16
Obtaining cServer Load Information . 16

2

Shutting Down a cServer Remotely . 17
SAPI Client (Windows clients only) . 17

CereProc cServer MRCP Connector 17
Installation . 17

Windows Operating System . 17
Linux Operating System . 18

Running the cServer MRCP Connector . 18
Windows Operating System . 18

Windows Log File . 18
Linux Operating System . 18

Linux Log File . 18
Command Line Running . 18

Advanced cServer MRCP Connector Configuration . 19
High Definition Calls . 19

MRCP Clients . 19
Aculab Configuration . 19
Voxpilot Configuration . 19
Voxeo Prophecy 10 Configuration . 20

Speech Synthesis Markup Language (SSML) support 20
Supported SSML Tags . 20

VoiceXML Built-in List . 21

CereProc Tag Set 21
Variant Tags . 22
Vocal Gestures . 22
Emotion Tags . 22

Happy Emotion Tag . 22
Sad Emotion Tag . 23
Calm Emotion Tag . 23
Cross Emotion Tag . 23

Troubleshooting 23
Obtaining Support . 23

Support Requests . 23
Direct Email . 24

Appendix 1 24
List of vocal gesture IDs . 24

Introduction

The cServer is a multi-channel Text-to-Speech (TTS) server for Windows (64-bit) and Linux environments. The
CereProc client library, cSpeech, is supported on Windows (32 and 64-bit), Linux (including ARM variants) and

3

Mac OS X. Microsoft SAPI 5 is also supported for 32 and 64-bit platforms (Windows clients only with Windows or
Linux cServer). Client-side wrappers for Python and Java are also available.

This document Copyright CereProc Ltd 2019

CereProc and CereVoice are trademarks of CereProc Ltd

Installation

CereProc provides Microsoft Installer (MSI) files for Windows platforms, and Redhat Package Manager (RPM) files
for Linux platforms.

Windows Operating System

CereProc digitally signs release MSI installers to ensure that they are valid. During installation the MSI vendor will
identified as CereProc Ltd.

cServer and Voice Installation

Install the cServer MSI first. CereVoice 6.0.0 Windows cServer requires a 64-bit version of Windows (32-bit 4.0.x
installers are available from support). Each MSI contains the cServer binaries and a compatible voice. The installer
file name contains the voice and sample rate that is bundled with the server. For example, the cServer installer for
the 48kHz version of the British English voice Sarah is called cServerSarah48000.msi.

From CereVoice 6.0.0, to ensure that your licenses to use CereProc voices don’t time out unexpectedly, a new way to
validate licenses was introduced. During the default GUI voice installation a license key validation window will appear.
The preferred option is to use CereProc login details (the same you used to purchase the voices on our website).
When this option is selected, the login website will be opened in the default Internet browser. After successful login,
voice installation can be continued. The files needed for license verification will be downloaded along the voice being
installed. There should be 4 files: 1) license file 2) license server certificate file (root_certificate.pem) 3) client
certificate file (<VID>_client.crt) 4) client authentication key file (<VID>_client.key), where VID is the Voice
ID used by CereProc license server to ensure the license for the specified voice is up-to-date. It is important that
these file names are not changed. Alternatively, the license key text can be copied directly if it was sent by email.
Enter the license key text and click Validate. If you do not have a license key, please raise a support request at
http://www.cereproc.com/support. The voice will not load without a valid license.

Multiple voices are supported. The cServer configuration is automatically updated each time an additional voice is
installed.

The cServer can be installed in unattended or quiet mode (for example with a command line install such as
msiexec.exe -i cServerSarah48000.msi -qn). In this mode files needed for license verification must be in-
stalled manually. The 4 files needed for license verification should be saved to the directory containing the
voice file. The license file should be called license.lic, the license server authentication file should be called
root_certificate.pem, and the client authentication certificate and key file names should be of the format
<VID>_client.crt and <VID>_client.key respectively where VID is the Voice ID used by CereProc license server
to ensure the license for the specified voice is up-to-date. It is important that these file names are not changed.

4

http://www.cereproc.com/support

The default location for the license verification files for the British English Sarah voice is C:\Program
Files\CereProc\cServer 6.0.0\voices\Sarah 6.0.0 48000\. For example, the default license file path
is at C:\Program Files\CereProc\cServer 6.0.0\voices\Sarah 6.0.0 48000\license.lic, the de-
fault license server certificate under C:\Program Files\CereProc\cServer 6.0.0\voices\Sarah 6.0.0
48000\root_certificate.pem, the client authentication certificate under C:\Program Files\CereProc\cServer
6.0.0\voices\Sarah 6.0.0 48000\<VID>_client.crt and key C:\Program Files\CereProc\cServer
6.0.0\voices\Sarah 6.0.0 48000\<VID>_client.key (replace <VID> with the actual VID provided).

cSpeech Client Installation

Run the windows_client_installer.msi installer. The installer includes the cSpeech client library, header files,
Python and Java wrappers, 3rd party library dependencies, and example application (cspeechclient) with a Visual
Studio Project and Cygwin Makefile. For simple configurations, where all clients use the Microsoft SAPI interface, it
is not necessary to install the cSpeech client.

Compiling and running Java example client (Cygwin example) The cspeech.jar Java library and depen-
dency cspeech.dll are installed in C:\Program Files (x86)\CereProc\CereVoice cServer cSpeech Client
6.0.0\cSpeech\javalib (javalib64 for 64-bit versions). Example Java applications are included in C:\Program
Files (x86)\CereProc\CereVoice cServer cSpeech Client 6.0.0\examples\java. To compile example Java
client (for 32-bit):

/cygdrive/c/Java_x86/jdk1.8.0_144/bin/javac.exe \
-cp "c:/Program Files (x86)/CereProc/CereVoice cServer \
cSpeech Client 6.0.0/cSpeech/javalib/cspeech.jar" \
"c:/Program Files (x86)/CereProc/CereVoice \
cServer cSpeech Client 6.0.0/examples/java/cSpeechAudioClient.java" \
"c:/Program Files (x86)/CereProc/CereVoice \
cServer cSpeech Client 6.0.0/examples/java/cSpeechPlayerClient.java"

Note that absolute path of JDK compiler has been used here for clarity; your system may have different version
and/or have javac set up as an alias. If "Access Denied", run Cygwin as administrator.

To run (32-bit), ensure third-party DLLs are present in the java library dir (i.e. copy all DLLs in 3rdparty/lib
into cSpeech/javalib) and do:

/cygdrive/c/Java_x86/jdk1.8.0_144/bin/java.exe \
-Djava.library.path="c:/Program Files (x86)/CereProc/CereVoice\
cServer cSpeech Client 5.0.0/cSpeech/javalib" \
-cp "c:/Program Files (x86)/CereProc/CereVoice cServer cSpeech \
Client 5.0.0/cSpeech/javalib/cspeech.jar; \
c:/Program Files (x86)/CereProc/CereVoice cServer cSpeech \
Client 5.0.0/examples/java" \
cSpeechAudioClient localhost 8989 in.xml out.raw

5

cSpeech SAPI Client Installation

Run the sapi_client_installer.msi installer. The installer adds a SAPI configuration tool in Start Menu -> All
Programs -> CereProc -> CereVoice cServer SAPI Client Voice Setup. To allow SAPI to access a cServer voice, the
voice information must be installed to the client machine registry. To install a SAPI voice on a client machine, run
the voice setup application and enter the details of the cServer in the Automatic setup panel. The setup application
adds the cServer voices to the SAPI registry, making them available to SAPI applications (SAPI applications may
need to be restarted to enable the additional cServer voices).

Uninstallation

All cServer packages can be uninstalled using Control Panel -> Add/Remove Programs (Programs And Features
under Windows Vista).

Linux Operating System

The CereProc cServer is supported on Red Hat Enterprise Linux (RHEL) version 5, 6, and 7 (cServer 4.x) and
RHEL 6 and 7 (cServer 5.x) and RHEL 7 (cServer 6.x). Compatible distributions such as Centos and Scientific
Linux are also supported.

CereProc digitally signs release RPM packages to ensure that they are valid. Before installing any other packages,
the CereProc Release GPG key should be installed (as the root user) using:

rpm --import http://www.cereproc.com/files/RPM-GPG-KEY-cereprocrelease

cServer Installation

First install the cServer package (eg rpm -Uvh cserver-6.0.0-0.i386.rpm or yum install cserver-6.0.0-0_el7.x86_64.rpm).
When using yum missing software dependencies are installed automatically. By default the cserver binary is
installed in /usr/bin/cserver. Please contact CereProc support if dependencies are not available.

Voice Installation

Voice files and licenses are automatically discovered by the cServer in subdirectories of /var/lib/cereproc/voices.
To install a voice, first extract the license zip file (found under the Files tab of the user’s CereProc website account)
in the /var/lib/cereproc/voices directory. The cServer Sarah 48k Standard license files, for example, would
be extracted into /var/lib/cereproc/voices/Sarah-48000-6.0.0. Download the voice file to the same location,
then restart the cServer.

The voice will not load without a valid license. Multiple voices in separate subdirectories are supported.

6

cSpeech Client Installation

Install the cSpeech client RPM package (eg rpm -Uvh cserver-client-6.0.0-0.i386.rpm or yum install
cserver-client-6.0.0-0.i386.rpm). The cSpeech libraries are installed in /usr/lib or /usr/lib64, with
cspeech.h in /usr/include. The cSpeech Python module is also installed. The example client applica-
tions, cspeechclient and cspeechclient.py, are installed to /usr/bin, with source code and Makefile in
/usr/src/cereproc.

Compiling and running Java example client The cspeech.jar Java library and JNI wrapper libcspeech.so
are installed in /usr/lib/java or /usr/lib64/java. Example Java applications are included in /usr/src/cereproc.
To compile the example Java clients (use lib64 on a 64-bit platform):

javac -cp /usr/lib/java/cspeech.jar cSpeechAudioClient.java
javac -cp /usr/lib/java/cspeech.jar cSpeechPlayerClient.java cSpeechAudioClient.java

Example commands to run the Java applications (use lib64 on a 64-bit platform):

java -Djava.library.path=/usr/lib/java -cp /usr/lib/java/cspeech.jar:. cSpeechAudioClient \
localhost 8989 in.xml out.raw
java -Djava.library.path=/usr/lib/java -cp /usr/lib/java/cspeech.jar:. cSpeechPlayerClient \
localhost 8989 in.xml

Compiling and running C# example client The cspeech.cs C# interface and libcspeech.so wrapper are in-
stalled in /usr/lib/csharp or /usr/lib64/csharp. An example C# application is included in /usr/src/cereproc.
To compile the example client (use lib64 on a 64-bit platform):

mcs cSpeechClient.cs /usr/lib/csharp/cspeech.cs

Example commands to run the C# application (use lib64 on a 64-bit platform):

export LD_LIBRARY_PATH=/usr/lib64/csharp
mono cSpeechClient.exe localhost 8989 in.xml out.raw

Uninstallation

All cServer packages can be uninstalled with an rpm or yum command, for example rpm -e "cserver-*" or yum
erase "cserver-*".

Additional Client Side Platforms

The cSpeech client supports additional platforms. The cSpeech library is also available on ARM Linux and Mac OS
X, please contact CereProc Support to obtain downloads for these clients.

7

Running the cServer

Windows Operating System

The CereVoice cServer installs as a Windows Service. Control over starting and stopping the cServer is carried out
using Microsoft’s Computer Management Console (to access the Management Console, right-click on My Computer
or Computer in the Start Menu and select Manage). The cServer Windows Service will be visible under Services
and Applications -> Services.

The cServer will start automatically after cServer and voice installation (for a non-GUI installation, where a license
key is not available, the cServer will exit immediately). If multiple voices are being installed, the cServer should be
restarted after the final voice install. This allows all installed voices to become available on the cServer.

Windows Log File

By default, a log file is written to the cServer installation directory in log\cserver.log (for example C:\Program
Files\CereProc\cServer 6.0.0\log\cserver.log). In the event of a problem with the cServer the log should be
inspected for error information.

On cServer load a previous log file is renamed by appending the current date to the file name.

Command Line Running

The cServer can also be invoked from the command line on Windows, for example:

cserver.exe -c ..\config\config.xml

By default a Windows Service will be started. To run without starting a Windows Service, use the -n flag, for
example:

cserver.exe -n -c ..\config\config.xml

Administrator privileges are required.

Linux Operating System

On platforms that use init scripts, the Linux cServer RPM installs a cserver init script to /etc/init.d/cserver.
This enables the the root user to start the cServer with the service cserver start command. By default the
cServer will start when the system is booted to run level 3, 4 or 5. The cServer can be shut down using service
cserver stop.

For platforms using systemd (such as RHEL 7 or Centos 7), the cServer installs and enables a cserver service . The
cServer can be started using systemctl start cserver and stopped with systemctl stop cserver.

8

Linux Log File

By default, a log file is written to /var/log/cserver.log. In the event of a problem with the cServer the log should
be inspected for error information.

On cServer load a previous log file is renamed by appending the current date to the file name.

Command Line Running

The cServer can also be invoked from the command line as the user root, for example:

/usr/bin/cserver -c /etc/cserver.conf

Maximum Incoming Connections

The maximum number of connections, or sessions, for each cServer voice is set in the voice license. For example, a
license containing the field "SES": "50" (or in case of older licenses, with the line SES=50) allows 50 concurrent
sessions for the voice. If required, the total number of connections available on the cServer can be reduced in the
configuration file (see the cServer Configuration Options section).

Exceeding the Incoming Connection Limit

If the cServer concurrent session limit is reached, clients remain able to open a connection to the cServer. This
indicates that the cServer itself is still running. However if the maximum number of connections has been exceeded,
the client will receive an error when a request is sent over the connection, and the connection is closed by the cServer.

Voice License Expiry

The voice license may contain an expiry date in the EXP field. For example, a license containing the field "EXP":
"20201231" (or in case of older licenses, with the line EXP=20201231) would expire on December 31, 2020. The
voice cannot be loaded after this date, however additional voices will continue to function if they have not expired.

cServer Configuration Options

cServer Configuration File

By default the cServer XML configuration file is installed to C:\Program Files\CereProc\cServer
6.0.0\conf\config.xml (Windows) or /etc/cserver.conf (Linux). On Windows, configuration files for
a voice are typically downloaded during installation. For installation without network access the voice, license and
certificates must be manually added to the configuration.

Example Linux configuration with automatic voice discovery:

9

<?xml version="1.0"?>
<server_config>

<server port="8989" max_connections="500" log_file="/var/log/cserver.log" log_level="WARNING"/>
<voices dir="/var/lib/cereproc/voices"/>

</server_config>

Example configuration file with two manually configured voices (paths are the Linux defaults):

<?xml version="1.0"?>
<server_config>

<server port="8989" max_connections="500" log_file="/var/log/cserver.log" log_level="WARNING"/>
<voices>

<voice name="Sarah"
file="/var/lib/cereproc/voices/Sarah-48000-6.0.0/cerevoice_6.0.0_sarah_48k.voice"
license="/var/lib/cereproc/voices/Sarah-48000-6.0.0/Sarah123_license.lic"
rootcertificate="/var/lib/cereproc/voices/Sarah-48000-6.0.0/root_certificate.pem"
certificate="/var/lib/cereproc/voices/Sarah-48000-6.0.0/Sarah123_client.crt"
key="/var/lib/cereproc/voices/Sarah-48000-6.0.0/Sarah123_client.key"
default="false">

</voices>
<voice name="Heather"

file="/var/lib/cereproc/voices/Heather-8000-6.0.0/cerevoice_6.0.0_heather_8k.voice"
license="/var/lib/cereproc/voices/Heather-8000-6.0.0/Heather123_license.lic"
rootcertificate="/var/lib/cereproc/voices/Heather-8000-6.0.0/root_certificate.pem"
certificate="/var/lib/cereproc/voices/Heather-8000-6.0.0/Heather123_client.crt"
key="/var/lib/cereproc/voices/Heather-8000-6.0.0/Heather123_client.key"
lexicon="/var/lib/cereproc/en_sc_additional.lex"
abbrev="/var/lib/cereproc/en.abb">

</voices>
</server_config>

User-configurable Options

Server Options

The <server> element contains global cServer configuration information, and has several user-configurable attributes.
The server listen port can be modified by changing the port attribute (all clients would need to access the cServer on
the new port). The max_connections attribute defines a theoretical maximum number of channels for the server.
However, the actual number of channels will depend on the SES value in the voice license. The max_connections
attribute can be used to throttle down the number of connections to a number lower than the total specifed in the
license SES value. The log_level attribute can be ERROR, WARNING, INFO or DEBUG, in order of increasing
verbosity.

There are extra parameters that may be used to further customise the behaviour of the server, although they should
only be used in special circumstances. The send_timeout and receive_timeout attributes can be used to modify the
default timeouts (in ms) for connections. The default timeouts are respectively 5000 (i.e. 5 seconds) for sending data
to a client, 600000 (60 seconds) for receiving data. In case a setup requires persistent connections (even if there is no

10

data being transferred), the receive_timeout should be modified. It can either be set to a larger value, or to "-1" for
no timeout. For a heavily loaded server on a high latency network, if some "send_timeout" events are detected, the
send_timeout attribute may be modified to a larger value.

Voice Options and User Lexicons

The <voice> elements contain the configuration information for individual voices. The default attribute can be used
to set the default voice on a cServer with multiple voices. If all voices are set to default="false", the first voice in
the configuration file is used as the default.

User Lexicons The <voice> element can take an optional attribute, lexicon, which points to a lexicon file specified
by the user.

Example lexicon line (English RP):

mourinho m_@@0_r_ii1_n_y_ou2

The basic lexicon format is a headword followed by a pronunciation. The headword must not contain numbers or
punctuation characters (to process a string that includes non-alphabetic characters, use an abbreviations file).

Vowel phonemes, such as @@, ii and ou in the example pronunciation, should have stress levels. These are 1 for
primary stress, 2 for secondary stress, and 0 for no stress.

Each accent has a different phone set. Different user lexicons would be required for British and American voices, for
example the Megan English GA voice and the Jess English RP voice. However, the same user lexicon could be used
between voices with the same accent, for example the Sarah and William English RP voices. See the CereVoice
Phone Sets document for example pronunciations.

If words with accented characters are added, the encoding must be UTF-8.

User lexicons can be reloaded dynamically, see the section on Controlling the cServer with Queries for more
information.

User Abbreviations The <voice> element can take an optional attribute, abbrev, which points to an abbreviations
file specified by the user.

The user lexicon format consists of a token, no break flag, and replacement text, line-by-line. Example entries (taken
from the current CereProc abbreviation list):

3G 0 three g
7/11 0 seven eleven
Dr 1 doctor
FAQ 0 f a:letter q

The first column is a whitespace-delimited token in the input text. The second column, the no break flag, describes
the handling of punctuation following the token. When set to 1, following punctuation is ignored. In the examples,
this would cause "Dr. Johnson" to be read without a pause between the words.

Some languages, such as English, have single letters that can be pronounced differently in an acronym compared to
free text. The letter pronunciation can be ensured by adding :letter after the letter (see the example for FAQ).

11

https://www.cereproc.com/files/CereVoicePhoneSets.pdf
https://www.cereproc.com/files/CereVoicePhoneSets.pdf

SSML and User Lexicons An SSML URI can be used to specify a user lexicon for a particular document, for
example:

<speak>
<lexicon uri="http://www.example.com/user.lex"/>
Hello Mr Mourinho.
</speak>

SSML and User Abbreviations An SSML URI can be used to specify user abbreviations for a particular
document, for example:

<speak>
<lexicon uri="http://www.example.com/user.abb" type="cprc.abbrev"/>
At the 7/11.
</speak>

Voice and License Validation File Paths

CereProc do not recommend changing the file paths unless absolutely necessary. If problems are encountered after
changing paths the log file should be checked for messages.

Monitoring options

Starting with version 3.0.0 of the cServer, automatic tools for monitoring the load of the server have been introduced.
These tools are disabled by default. They can be activated by adding the following line to the server configuration:

<usage rootname="/var/log/cserver_usage" sampling_period="600" genere_period="86400"/>

The <usage> has three attribute to control the behaviour of the monitoring functions. The rootname attribute
allows the user to specify the location of the log files generated. The sampling_period (in seconds) controls how often
the load should be polled. The genere_period (in seconds) controls how often a new log file should be generated.

cSpeech Client

The cSpeech client library can be used for integration into a C, C++, Python, or Java client application.

To perform the simplest possible synthesis request, client applications must:

• Create a callback to handle the cServer response
• Open a connection to a running cServer
• Send text or XML to the cServer (must be null-terminated if C/C++)

12

cSpeech Client Integration

Minimal cSpeech Client Code Examples

Note that these examples do not test that API calls succeed. In a deployment system return codes should be checked
(for example, if a cServer is unavailable CS_SUCCESS will not be returned when opening a connection).

C++ cSpeech Client Example

#include <stdio.h>
#include "cspeech.h"

FILE * fp;
int callback(void * user, int event_id, void * data, long data_length);

// Minimal cSpeech callback function to write audio to a file
int callback(void * user, int event_id, void * data, long data_length){

switch(event_id) {
case PACKET_AUDIO:
fwrite(data, data_length, 1, fp);
break;
}
// Callback must return success or future calls will be skipped
return CS_SUCCESS;

}

int main(int argc, char **argv) {
// Speak 'Hello world' to a file using cSpeech
fp = fopen("out.raw", "wb");
CS_CONNECTION connection = csCreateConnection();
csOpenConnection(connection, "localhost", 8989);
csSetCallBack(connection, callback);
// The input string must be null terminated
csRenderSpeech(connection, "Hello world");
csDestroyConnection(connection);

}

Python cSpeech Client Example

import cspeech
import array

Minimal cSpeech callback class to write audio to a file
class callback:

def __init__(self, outfp):
self.outfp = outfp

13

This function is called by cSpeech when data is returned
def callback(self, event_id, data_handle, data_length):

if event_id == cspeech.PACKET_AUDIO:
Convert audio to an array of shorts and write data
audiodata = cspeech.data_to_audio(data_handle)
shortarray = array.array("h")
for i in range(data_length/2):

shortarray.append(cspeech.audio_val(audiodata, i))
self.outfp.write(shortarray.tostring())

return cspeech.CS_SUCCESS

Speak 'Hello world' to a file using cSpeech
outfp = open('out.raw', 'w')
mycallback = callback(outfp)
connection = cspeech.csCreateConnection()
cspeech.csOpenConnection(connection, "localhost", 8989)
cspeech.set_callback(connection, mycallback)
cspeech.csRenderSpeech(connection, "Hello world")
cspeech.csDestroyConnection(connection)

Alternative Synthesis Calls

cSpeech offers six synthesis calls, depending on whether the user requires XML parsing, asynchronous processing, or
input data streaming. In XML mode it is essential that the synthesis request forms an XML document with valid
opening and closing tags. If broken XML is synthesised the server may begin reading XML content inappropriately.

Synthesis call Input type Blocking Streaming
csRenderSpeech Text Yes No
csRenderSpeechXML XML Yes No
csRenderSpeechAsync Text No No
csRenderSpeechXMLAsync XML No No
csPushSpeechStream Text Yes Yes
csPushSpeechStreamXML XML Yes Yes

Using the Asynchronous Calls Where the asynchronous calls are being used, the calling program may need to
wait for synthesis to finish. To achieve this, the callback function should check for a PACKET_THREAD_FINISHED
event and inform the main program that synthesis is complete on the callback thread (see the cspeechclient.cc
code for an example).

Using the Streaming Calls The streaming calls allow data to be streamed over the connection in chunks. For
example:

csPushSpeechStreamXML(connection, "<speak>\n");
csPushSpeechStreamXML(connection, "Hello ");

14

csPushSpeechStreamXML(connection, "world");
csPushSpeechStreamXML(connection, "\n</speak>\n");
csFlushSpeechStreamXML(connection);

Is equivalent to:

csRenderSpeechXML(connection, "<speak>\nHello world\n</speak>\n")

Strings must be null terminated. If the output contains extra data that was not in the input, it may be a null
termination problem.

The streaming mode may be preferred if a large amount of data is being processed and the application splits the
input data into pieces. See the cspeechclient.cc code for another example.

Example Applications in C++, Python, and C#

The example applications cspeechclient.cc, cspeechclient.py, and cSpeechClient.cs contain examples of
using the cSpeech client in a variety of configurations. They include error-checking when making cSpeech library
calls, and contain examples of using the various text, XML, synchronous, asynchronous, and streaming modes.

cSpeech Header File

The header file cspeech.h contains full documentation on all of the cSpeech API calls.

Controlling the cServer with Queries

The cServer implements an XML query API, along with some helper functions, allowing various types of non-TTS
request to be sent to the cServer.

Obtaining Voice Information

Information about the available cServer voices is obtained using the csEnumerateConnectionVoices function. The
function returns an iterator, and requires an open connection to a cServer to be supplied as its argument. For
example (Python):

voice_enumerator = cspeech.csEnumerateConnectionVoices(connection)
voice_name = cspeech.csNextVoice(voice_enumerator)
while(voice_name):

print "Voice name is", voice_name
print "Sample rate is", \

cspeech.csGetVoiceIntegerValue(voice_enumerator, cspeech.CS_VOICE_INTEGER_SAMPLE_RATE)
print "Gender is", \

cspeech.csGetVoiceStringValue(voice_enumerator, cspeech.CS_VOICE_STRING_GENDER)
voice_name = cspeech.csNextVoice(voice_enumerator)

cspeech.csCloseEnumerator(voice_enumerator)

15

See cspeechclient.cc or cspeechclient.py for a full example. The cspeech.h header also includes details of the additional
information that can be read from the enumerator. Information on language, country, accent, compression codec,
and bits per sample is available.

Selecting a Voice

The cServer voice can be selected with an XML query, for example:

csQueryServer(connection, "<voice name='Heather' select='1'/>");

When the named voice is unavailable, the request is ignored and the default voice continues to be used.

If the cSpeech client callback is set up to capture PACKET_XML_COMMAND responses, the client will receive an
XML string containing information about the voice that has been selected. If the voice is not available the XML
document body returned is <xml_reply><voice name="Unknown"/></xml_reply>.

As an alternative to using the voice enumerator function, the client can use csQueryServer(connection, "<voice
name='all'/>") to retrieve an XML string containing information about all cServer voices.

Reloading a User Lexicon

The cServer is able to dynamically reload a user lexicon into a running voice. The reload must be triggered via an
XML query, for example:

csQueryServer(connection, "<reloadlex voice='Heather'/>");

To reload all user lexicons, use reloadlex without any attributes:

csQueryServer(connection, "<reloadlex/>");

Note: the reload function requires the lexicon to be specified in the cServer configuration at the time the cServer
was loaded. When adding a user lexicon to a voice for the first time the cServer must be restarted to enable user
lexicon functionality for the voice.

Obtaining cServer Load Information

The getserverinfo query can be used to retrieve the total number of available connections and the number currently
in use, for example:

csQueryServer(connection, "<getserverinfo/>");

The response is sent to the callback as a PACKET_XML_COMMAND event containing an XML document. A
20-port server with 5 ports in use would return:

<xml_reply>
<server connections="5" max_connections="20"/>

</xml_reply>

Note that the XML query itself is sent over a connection, so the minimum value for connections is 1.

16

Shutting Down a cServer Remotely

The cServer can be shut down by a remote cSpeech client using an XML query:

csQueryServer(connection, "<shutdown/>")

SAPI Client (Windows clients only)

The SAPI client supports phoneme, viseme, word, sentence, and marker events. 32 and 64-bit versions of Windows
are supported.

SAPI rate, pitch, emphasis, volume, and break settings are supported.

SAPI XML mode must be used if the client sends SSML or CereProc XML markup. If SAPI XML mode is not used
XML characters are read out.

Note that the cSpeech SAPI client does not allow XML queries to be sent to the cServer, for example to reload a
user lexicon. To access these API functions, install the cSpeech client library and send csQueryServer requests via
the cSpeech client.

CereProc cServer MRCP Connector

The CereProc cServer MRCP Connector allows MRCP version 1 and 2 clients to access a cServer for TTS generation.
The integration is implemented as a plugin for the open-source, open-standard UniMRCP Server. The connector
runs as a service, converting MRCP requests into cSpeech API calls, sending them to a cServer, and returning the
resulting audio to an MRCP client.

Installation

The default installation assumes that the cServer is running on the install machine on port 8989. If the cServer is
running on a different machine and/or port, see the advanced configuration section.

Windows Operating System

1. Ensure the cServer is installed and running correctly, as above.
2. Download and install the UniMRCP unimrcp-1.0.0.exe package from http://code.google.com/p/unimrcp/downloads/detail?name=unimrcp-

1.0.0.exe (the MRCP cServer Connector is compatible with the 32-bit version of UniMRCP), during installation
uncheck Demo synthesizer plugin on the Select components screen.

3. Install the cServer MRCP Connector (mrcp_connector_installer.msi).

Note that if the Demo synthesizer plugin is installed the Demo-Synth-1 plugin must be set to enable="false" in the
unimrcpserver.xml configuration file.

17

http://www.unimrcp.org
http://code.google.com/p/unimrcp/downloads/detail?name=unimrcp-1.0.0.exe
http://code.google.com/p/unimrcp/downloads/detail?name=unimrcp-1.0.0.exe

Linux Operating System

1. Ensure the cServer is installed and running correctly, as above.
2. Install the cpunimrcpserver RPM (for example cpunimrcpserver-6.0.0-0_el7.x86_64.rpm in the case of

the RHEL 7 version).

Running the cServer MRCP Connector

Windows Operating System

The cServer MRCP Connector installs as a Windows Service. Control over starting and stopping the connector is
carried out using Microsoft’s Computer Management Console (to access the Management Console, right-click on My
Computer or Computer in the Start Menu and select Manage). The UniMRCP Server Windows Service will be
visible under Services and Applications -> Services. Right click the service name and select Properties to enable
automatic startup of the service.

Windows Log File

By default, a unimrcpserver-0.log file is written to the log directory in the UniMRCP installation directory. In
the event of a problem with the MRCP connector, the log should be inspected for error information. The UniMRCP
Server service Properties pane can also be used to change the logging level by adding the -l flag, -l 7 enables
debug logging, -l 0 emergency logging.

Linux Operating System

The Linux cServer MRCP Connector RPM installs a cpunimrcpserver init script to /etc/init.d/cpunimrcpserver.
This enables the the root user to start the cServer MRCP Connector with the service cpunimrcpserver start
command. By default the connector will start when the system is booted to run level 3, 4 or 5. The connector can
be shut down using service cpunimrcpserver stop.

Linux Log File

By default, a log file is written to /var/lib/cereproc/mrcp/log/unimrcpserver-0.log. In the event of a problem
with the connector, the log should be inspected for error information.

Command Line Running

The cServer MRCP Connector can also be invoked from the command line as the user root, for example:

/usr/bin/cpunimrcpserver -r /var/lib/cereproc/mrcp

In this mode, log messages are printed to the terminal. The log level can be changed by adding the -l flag, -l 7
enables debug logging, -l 0 emergency logging.

18

Advanced cServer MRCP Connector Configuration

The MRCP connector can access a cServer running on a remote host or a different port to the default 8989. Configura-
tion information is stored in the unimrcpserver.xml configuration file. On Windows, this file is found in the conf di-
rectory of the UniMRCP installation. On Linux, the file is in /var/lib/cereproc/mrcp/conf/unimrcpserver.xml.

To change the cServer or port that the MRCP connector uses to generate TTS, edit the cSpeech information in the
section. For example, to change the port to 9999 and the host name to host.example.com, the cSpeech <engine>
section would be changed to:

<engine id="CPRC-Synth-1" name="libcspeech_synth_engine_shared" enable="true">
<!-- Host name and port of the cServer to connect to -->
<param name="host" value="host.example.com"/>
<param name="port" value="9999"/>

</engine>

High Definition Calls

The cServer MRCP connector supports high definition 16kHz speech output. The installed cServer voices 16kHz
to support this mode. To enable high definition support, edit the <settings> section of the unimrcpserver.xml
configuration file to support high definition codecs:

<codecs own-preference="false">PCMU PCMA PCMU/97/16000 PCMA/98/16000 L16/99/16000</codecs>

Remove the existing line containing 8kHz codecs only. MRCP clients can then request and receive 16kHz output.

MRCP Clients

Note that when running the connector, cServer, and an MRCP client on the same machine, it might be necessary to
use the machine’s host name (not localhost or 127.0.0.1) when running the client.

Compatible clients include UniMRCP (MRCP v1 and v2), Aculab (MRCP v1), Voxeo (MRCP v1), Voxpilot (MRCP
v1) and Holly Connnects (MRCP v1, reported by the UniMRCP project).

Aculab Configuration

The Aculab MRCP server compatiblity test is found in the AIT in example_code/mrcp/server_compatibility_test.
It can be run with:

./mrcp_sct -s host.example.com -t -p 1554 -y speechsynthesizer -r speechrecognizer

Voxpilot Configuration

First edit the Voxpilot SSML configuration (by default C:\Voxpilot\ssmlprocessor\conf\ssmlprocessor.conf),
and set NumChannelsMRCP. For the free 2-port verision use NumChannelsMRCP=2. Then edit the MRCP

19

configuration (by default C:\Voxpilot\ssmlprocessor\conf\mrcp.xml), adding an entry for the cServer MRCP
Connector:

<!-- Note that when running the UniMRCP and Voxpilot servers on the same machine, it might be necessary
to use the machine name (not ''localhost'' or ''127.0.0.1'')

-->
<resource lang="en-GB" resourcetype="speechsynth" vendor="CereProc" persist="true">

<server uri="rtsp://host.example.com:1554/speechsynthesizer" priority="0"/>
</resource>

Restart the Voxpilot SSML Processor service and the cServer voices will be available on the Voxpilot server.

Voxeo Prophecy 10 Configuration

Prophecy 10 is the first version of Prophecy to support MRCP. Earlier versions of Prophecy are not supported.

If Prophecy and the cServer MRCP Connector are going to be on the same server, the connector configuration file
must be edited so that <ip>127.0.0.1</ip> is set under <properties> (see the Advanced configuration section for
information on editing the connector configuration). If the value is not set, the connector binds to the host name,
but Prophecy assumes 127.0.0.1.

In a web browser, connect to the Prophecy Commander web interface (eg http://host.example.com:9996). Click
the Servers button on the top bar, and select the server name (for example host.example.com). An Edit Server
box appears at the bottom of the page. Click the Configuration tab, then Add (under Services). Select TTS then
Loquendo Speech Server MRCPv1 (v7), choose a voice, and confirm. Back in the Edit Server window, expand the
new entry for the MRCP voice and change the port to 1554. Then click Save. The MRCP resource is then added to
the server.

Next, change the virtual platform to use the new resource. Under the Servers tab, click Virtual Platform List, select
Default, and the TTS role line, select Default, and change the Service to the new Loquendo Speech Server MRCPv1
(v7) voice. After confirming the choices, click Save under Edit Virtual Platform and the changes will be applied.

Speech Synthesis Markup Language (SSML) support

SSML is an open standard for TTS markup. It is a subset of VoiceXML (VXML), all SSML tags are available in a
VXML environment. SSML includes tags for modifying pitch, rate, and pronunciation. It also supports inserting
audio, markers, and breaks. Usage, with examples, is described on the W3C page. The SSML tags currently
supported in CereVoice can be found in the table below. Custom user pronunciations are supported using CereProc
phone sets and IPA as part of the Pronunciation Lexicon Specification (PLS).

Supported SSML Tags

Tag Supported
audio yes (HTTP and file URLs, sample rate should match text-to-speech output)

20

http://host.example.com:9996
http://www.w3.org/TR/speech-synthesis
https://www.w3.org/TR/pronunciation-lexicon/

Tag Supported
break yes (break strength of "none" is not supported)
emphasis yes
lexicon yes (IPA with PLS, CereProc format)
mark yes
meta ignored
metadata ignored
p yes
phoneme yes (IPA with PLS, CereProc phone set)
prosody yes (semitone values are not supported)
say-as yes (VoiceXML builtins are supported, see below
sub yes
s yes
voice yes (if multiple voices are loaded into the engine, a <voice> tag can be used to switch between them)
xml:lang no

VoiceXML Built-in List

CereProc supports VXML built-in grammar types as say-as tags, allowing interaction with the output of a VXML
recogniser. For example, <say-as interpret-as="vxml:time">1230p</say-as> would be read as twelve thirty P
M by an English voice. The VXML built-in tags are the only open standard for interpret-as values. Normally, the
input is produced by a speech recogniser running in a VXML environment. However, the input formats can also be
used directly to ensure consistent text processing.

Available interpret-as values for say-as tags:

interpret-as value Input
vxml:boolean 1 = true, 2 = false
vxml:date Format is yyyymmdd, unspecified values can be replaced with ???? or ??
vxml:digits String of digits
vxml:currency Format is UUUmm.nn, where UUU is the ISO4217 currency code, and mm.nn the currency amount
vxml:number String of digits, optionally including a decimal point and/or a plus/minus sign
vxml:phone String of digits, optionally including x for extension
vxml:time Format is hhmmx, where x is a, p or h for AM, PM, or 24 hour clock respectively

See the VoiceXML 2 documentation Appendix P for more information.

CereProc Tag Set

CereProc has implemented additional TTS functionality that is not part of the SSML specification.

21

https://www.w3.org/TR/voicexml20/#dmlABuiltins
http://www.w3.org/TR/voicexml20/#dmlABuiltins

Variant Tags

Please note that the variant tag is not currently supported by CereWave AI DNN voices

The variant tag allows the user to request a different version of the synthesis for a particular section of speech. This
is a very useful tag that can be used to make sections of speech sound more appropriate. The variant number can be
increased to produce more and more different versions of the speech. The original version is equivalent to variant 0.
For example, to change the version of the word test in This is a test sentence, use:

<s>
This is a <usel variant='1'>test</usel> sentence.

</s>

The variant tag can be used to produce a bespoke rendering of a particular piece of speech. For example, an
often-used speech prompt could be tuned to give a different rendering if desired. Please note that the variant tag
should mainly be used for creating static prompts (i.e. audio files). The effect of the variant number is different
between voices, and may also change when a new version of the same voice is produced (this is because the underlying
speech engine is being constantly improved, and the default rendering may change).

Vocal Gestures

Non-speech sounds, such as laughter and coughing, can be inserted into the output speech. The <spurt> tag is used
with an audio attribute to select a vocal gesture to included in the synthesis output, for example:

<speak>
<spurt audio="g0001_004">cough</spurt>, excuse me, <spurt audio="g0001_018">err</spurt>, hello.

</speak>

The <spurt> tag cannot be empty, however the text content of the tag is not read, it is replaced by the gesture.

See the List of vocal gesture IDs for the full list of available gestures.

Emotion Tags

Available in voices with emotional support (for example Heather, Sarah, William, Katherine).

Happy Emotion Tag

For example:

<s>
Today, <voice emotion='happy'>the sun is shining.</voice>

</s>

22

Sad Emotion Tag

<s>
The outbreak<voice emotion='sad'>cast a shadow</voice> over the former
Victorian holiday resort.

</s>

Calm Emotion Tag

<s>
The beautiful gardens have been restored to all their
<voice emotion='calm'>eccentric Victorian splendour.</voice>

</s>

Cross Emotion Tag

<s>
When people leave a tip they want to know it will
<voice emotion='cross'> not be used</voice> to make up the minimum wage.

</s>

Troubleshooting

The majority of cServer problems can be solved by checking the cServer log file. The log file will contain warning or
error messages in most cases where problems occur. Errors are logged in the following cases, for example:

• Voice file is invalid or missing
• License file is invalid, expired or missing
• User lexicon is invalid or missing
• Listen port is unavailable
• Maximum number of connections exceeded

Obtaining Support

CereProc offers support for the cServer via email. There are two methods of contacting CereProc Support:

Support Requests

The fastest way to contact CereProc Support is via a support request. First log in, or create a user, at
https://www.cereproc.com/user/login. Registered users can then use the support form at http://www.cereproc.com/support/support_request.
Please select the appropriate product from the list and submit the support request.

23

https://www.cereproc.com/user/login
http://www.cereproc.com/support/support_request

Direct Email

CereProc support can be emailed at support@cereproc.com. However, queries sent to this address may take longer
to reach the appropriate technical support representative than requests sent using the support request form.

Appendix 1

List of vocal gesture IDs

These IDs can be used to insert a ’vocal gesture’ (non-speech sound) into synthesis.

Note that gesture g0001_035 is available in Scottish voices only.

Gesture ID Gesture content
g0001_001 tut
g0001_002 tut tut
g0001_003 cough
g0001_004 cough
g0001_005 cough
g0001_006 clear throat
g0001_007 breath in
g0001_008 sharp intake of breath
g0001_009 breath in through teeth
g0001_010 sigh happy
g0001_011 sigh sad
g0001_012 hmm question
g0001_013 hmm yes
g0001_014 hmm thinking
g0001_015 umm
g0001_016 umm
g0001_017 err
g0001_018 err
g0001_019 giggle
g0001_020 giggle
g0001_021 laugh
g0001_022 laugh
g0001_023 laugh
g0001_024 laugh
g0001_025 ah positive
g0001_026 ah negative
g0001_027 yeah question
g0001_028 yeah positive
g0001_029 yeah resigned
g0001_030 sniff

24

mailto:support@cereproc.com

Gesture ID Gesture content
g0001_031 sniff
g0001_032 argh
g0001_033 argh
g0001_034 ugh
g0001_035 ocht
g0001_036 yay
g0001_037 oh positive
g0001_038 oh negative
g0001_039 sarcastic noise
g0001_040 yawn
g0001_041 yawn
g0001_042 snore
g0001_043 snore phew
g0001_044 zzz
g0001_045 raspberry
g0001_046 raspberry
g0001_047 brrr cold
g0001_048 snort
g0001_050 ha ha (sarcastic)
g0001_051 doh
g0001_052 gasp

Copyright CereProc Ltd, CereProc and CereVoice are trademarks of CereProc Ltd

25

	Introduction
	Installation
	Windows Operating System
	cServer and Voice Installation
	cSpeech Client Installation
	cSpeech SAPI Client Installation
	Uninstallation

	Linux Operating System
	cServer Installation
	Voice Installation
	cSpeech Client Installation
	Uninstallation

	Additional Client Side Platforms

	Running the cServer
	Windows Operating System
	Windows Log File
	Command Line Running

	Linux Operating System
	Linux Log File
	Command Line Running

	Maximum Incoming Connections
	Exceeding the Incoming Connection Limit

	Voice License Expiry

	cServer Configuration Options
	cServer Configuration File
	User-configurable Options
	Server Options
	Voice Options and User Lexicons
	Voice and License Validation File Paths
	Monitoring options

	cSpeech Client
	cSpeech Client Integration
	Minimal cSpeech Client Code Examples
	Alternative Synthesis Calls
	Example Applications in C++, Python, and C#
	cSpeech Header File

	Controlling the cServer with Queries
	Obtaining Voice Information
	Selecting a Voice
	Reloading a User Lexicon
	Obtaining cServer Load Information
	Shutting Down a cServer Remotely

	SAPI Client (Windows clients only)

	CereProc cServer MRCP Connector
	Installation
	Windows Operating System
	Linux Operating System

	Running the cServer MRCP Connector
	Windows Operating System
	Windows Log File

	Linux Operating System
	Linux Log File
	Command Line Running

	Advanced cServer MRCP Connector Configuration
	High Definition Calls

	MRCP Clients
	Aculab Configuration
	Voxpilot Configuration
	Voxeo Prophecy 10 Configuration

	Speech Synthesis Markup Language (SSML) support
	Supported SSML Tags
	VoiceXML Built-in List

	CereProc Tag Set
	Variant Tags
	Vocal Gestures
	Emotion Tags
	Happy Emotion Tag
	Sad Emotion Tag
	Calm Emotion Tag
	Cross Emotion Tag

	Troubleshooting
	Obtaining Support
	Support Requests
	Direct Email

	Appendix 1
	List of vocal gesture IDs

